
etlTest Documentation
Release 0.1.2 - beta

Alex Meadows, Coty Sutherland

October 02, 2014

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Why etlTest? . 3
1.3 How Does It Work? . 3

2 How to contribute 9
2.1 Getting Started . 9
2.2 Making Changes . 9
2.3 Submitting Changes . 10
2.4 Additional Resources . 10

3 Setting Up 11

4 Configuration Settings 13
4.1 etlTest Settings . 13
4.2 Data Connections . 14
4.3 etlTest User Properties Settings . 14
4.4 Data Integration Tool Settings . 15
4.5 Settings File Location . 16
4.6 Variable Replacement . 17

5 Development Standards 19
5.1 Sample Data File Standards . 19
5.2 Test File Standards . 19
5.3 Test Components . 20
5.4 Test Templates . 20

6 The etlTest Tutorial 23
6.1 Preparing Your Environment . 23
6.2 Writing Your First Test . 24
6.3 Creating A Sample Data Set . 24
6.4 Configuring Your Data Integration Tool . 26
6.5 Generating Test Code . 26
6.6 Executing Your Tests . 26
6.7 Sample MySQL Database . 26

i

ii

etlTest Documentation, Release 0.1.2 - beta

etlTest is a testing framework for data integration code.

The home for etlTest is on GitHub .

The goal of etlTest is to make creating and executing tests for data integration code as simple as possible. We
have achieved this through the use of YAML files to store test data sets and the actual tests. Those files then get
translated into Python unittests and can be executed from the command line. The results will show where there
is more work to be done.

We have initially focused on unit tests, but we are planning on building out to cover other types of testing as well.

We are always looking for new feature requests, bugs, and other contributions! To learn more on how to contribute,
please refer to our Contributing page. To see what is on the roadmap, please check out our Issue Board.

Contents 1

https://github.com/OpenDataAlex/etlTest/
http://www.yaml.org/
https://docs.python.org/2/library/unittest.html
https://github.com/OpenDataAlex/etlTest/issues?state=open

etlTest Documentation, Release 0.1.2 - beta

2 Contents

CHAPTER 1

Introduction

This section provides high level details on etlTest and it’s various components.

1.1 Overview

Below is an overview of what etlTest is and how it works. It is important to understand some fundamental concepts:

• Unit testing

• Test driven development

• Continuous Integration

1.2 Why etlTest?

Data integration tools do not have standard output in terms of code. To make matters even more interesting, many of
them do not integrate with external version control systems (like Subversion or Git) let alone have a universal way to
test code. etlTest aims to change that last part by providing a universal way to work with data integration tests. This
way, regardless of the data source or data integration tool your tests will be able to be used with minimal effort to
convert them over when the stack you’re working on changes.

1.3 How Does It Work?

Developing tests in etlTest is designed to be as simple as possible. All that is required (other than installing etlTest ;))
is to generate a sample data file...

//etltest/samples/data/etlUnitTest/users.yml
1:
user_id: 1
first_name: Bob
last_name: Richards
birthday: 2000-01-04
zipcode: 55555
is_active: 0

2:
user_id: 2
first_name: Sarah
last_name: Jenkins

3

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Continuous_integration
http://subversion.apache.org/
http://git-scm.com/

etlTest Documentation, Release 0.1.2 - beta

birthday: 2000-02-02
zipcode: 12345
is_active: 1

...

and a test file...

//etltest/samples/test/dataMart/users_dim.yml
DataMart\UsersDim:

suites:
- suite: dataMart

processes:
- tool: PDI

processes:
- name: data_mart/user_dim_jb.kjb

type: job
dataset:

- source: etlUnitTest
table: users
records: [1, 2]

tests:
- name: testFirstNameLower

desc: Test for process that lower cases the first name field of a users table record.
type: NotEqual
query:
select: first_name
from: user_dim
where: user_id = 2
source: etlUnitTest
result: {'first_name': 'sarah'}

See sample data file standards and test file standards for full template details.

Once your tests have been written, you can then have etlTest generate and execute your code.

$ etlTest.py -f <path_to_your_test.yml> -o <path_to_your_output_dir> -g -e

Which will generate and run something similar to:

//etltest/samples/output/DataMart/UsersDim.py
#!/usr/bin/python
#
This file was created by etlTest.
#

These tests are also run as part of the following suites:
#
dataMart
#
The following processes are executed for these tests:
#
PDI:
data_mart/user_dim_jb.kjb

import unittest
import datetime
from os import path

from etltest.data_connector import DataConnector
from etltest.process_executor import ProcessExecutor

4 Chapter 1. Introduction

etlTest Documentation, Release 0.1.2 - beta

from etltest.utilities.settings_manager import SettingsManager

class DataMartUsersDimTest(unittest.TestCase):

def setUp(self):
Queries for loading test data.

DataConnector("etlUnitTest").insert_data("users", [1, 2])

PDI_settings = SettingsManager().get_tool("PDI")
PDI_code_path = SettingsManager().system_variable_replace(PDI_settings["code_path"])
ProcessExecutor("PDI").execute_process("job",
path.join(PDI_code_path, "data_mart/user_dim_jb.kjb"))

def tearDown(self):
Clean up testing environment.

DataConnector("etlUnitTest").truncate_data("users")

def testFirstNameLower(self):
Test for process that lower cases the first name field of a users table record.

given_result = DataConnector("etlUnitTest").select_data("first_name",
"user_dim", "user_id = 2")

expected_result = [{'first_name': 'sarah'}]

self.assertNotEqual(given_result, expected_result)

if __name__ == "__main__":
unittest.main()

Notice that etlTest generates actual Python code so that you can leverage a full blown testing framework without
writing a single line of code! We’ll go over the various components of the test suites in Test Components

1.3.1 Overview

Below is an overview of what etlTest is and how it works. It is important to understand some fundamental concepts:

• Unit testing

• Test driven development

• Continuous Integration

1.3.2 Why etlTest?

Data integration tools do not have standard output in terms of code. To make matters even more interesting, many of
them do not integrate with external version control systems (like Subversion or Git) let alone have a universal way to
test code. etlTest aims to change that last part by providing a universal way to work with data integration tests. This
way, regardless of the data source or data integration tool your tests will be able to be used with minimal effort to
convert them over when the stack you’re working on changes.

1.3. How Does It Work? 5

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Continuous_integration
http://subversion.apache.org/
http://git-scm.com/

etlTest Documentation, Release 0.1.2 - beta

1.3.3 How Does It Work?

Developing tests in etlTest is designed to be as simple as possible. All that is required (other than installing etlTest ;))
is to generate a sample data file...

//etltest/samples/data/etlUnitTest/users.yml
1:
user_id: 1
first_name: Bob
last_name: Richards
birthday: 2000-01-04
zipcode: 55555
is_active: 0

2:
user_id: 2
first_name: Sarah
last_name: Jenkins
birthday: 2000-02-02
zipcode: 12345
is_active: 1

...

and a test file...

//etltest/samples/test/dataMart/users_dim.yml
DataMart\UsersDim:

suites:
- suite: dataMart

processes:
- tool: PDI

processes:
- name: data_mart/user_dim_jb.kjb

type: job
dataset:

- source: etlUnitTest
table: users
records: [1, 2]

tests:
- name: testFirstNameLower

desc: Test for process that lower cases the first name field of a users table record.
type: NotEqual
query:
select: first_name
from: user_dim
where: user_id = 2
source: etlUnitTest
result: {'first_name': 'sarah'}

See sample data file standards and test file standards for full template details.

Once your tests have been written, you can then have etlTest generate and execute your code.

$ etlTest.py -f <path_to_your_test.yml> -o <path_to_your_output_dir> -g -e

Which will generate and run something similar to:

//etltest/samples/output/DataMart/UsersDim.py
#!/usr/bin/python
#
This file was created by etlTest.

6 Chapter 1. Introduction

etlTest Documentation, Release 0.1.2 - beta

#

These tests are also run as part of the following suites:
#
dataMart
#
The following processes are executed for these tests:
#
PDI:
data_mart/user_dim_jb.kjb

import unittest
import datetime
from os import path

from etltest.data_connector import DataConnector
from etltest.process_executor import ProcessExecutor
from etltest.utilities.settings_manager import SettingsManager

class DataMartUsersDimTest(unittest.TestCase):

def setUp(self):
Queries for loading test data.

DataConnector("etlUnitTest").insert_data("users", [1, 2])

PDI_settings = SettingsManager().get_tool("PDI")
PDI_code_path = SettingsManager().system_variable_replace(PDI_settings["code_path"])
ProcessExecutor("PDI").execute_process("job",
path.join(PDI_code_path, "data_mart/user_dim_jb.kjb"))

def tearDown(self):
Clean up testing environment.

DataConnector("etlUnitTest").truncate_data("users")

def testFirstNameLower(self):
Test for process that lower cases the first name field of a users table record.

given_result = DataConnector("etlUnitTest").select_data("first_name",
"user_dim", "user_id = 2")

expected_result = [{'first_name': 'sarah'}]

self.assertNotEqual(given_result, expected_result)

if __name__ == "__main__":
unittest.main()

Notice that etlTest generates actual Python code so that you can leverage a full blown testing framework without
writing a single line of code! We’ll go over the various components of the test suites in Test Components

1.3. How Does It Work? 7

etlTest Documentation, Release 0.1.2 - beta

8 Chapter 1. Introduction

CHAPTER 2

How to contribute

Want to participate/contribute to etlTest? Feel free to add any enhancements, feature requests, etc.

2.1 Getting Started

• Create a new, Python 2.7+ virtualenv and install the requirements via pip:

$ pip install -r requirements.txt

• Make sure you have a GitHub account

• Submit issues/suggestions to the Github issue tracker * For bugs, clearly describe the issue including steps to
reproduce. Please include stack traces, logs, screen shots, etc. to help us identify and address the issue. *
For text based artifacts, please use: Gist or Pastebin * For enhancement requests, be sure to indicate if you are
willing to work on implementing the enhancement * Fork the repository on GitHub if you want to contribute
code/docs

2.2 Making Changes

• etlTest uses git-flow as the git branching model

– All commits should be made to the dev branch

– Install git-flow and create a feature branch with the following command:

$ git flow feature start <name of your feature>

• Make commits of logical units with complete documentation.

• Check for unnecessary whitespace with git diff –check before committing.

• Make sure you have added the necessary tests for your changes.

– Test coverage is currently tracked via coveralls.io

– Aim for 100% coverage on your code

* If this is not possible, explain why in your commit message. This may be an indication that your code
should be refactored.

• To make sure your tests pass, run:

9

https://github.com/signup/free
https://github.com/OpenDataAlex/etlTest/issues
https://gist.github.com/
http://pastebin.com/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow
https://coveralls.io/r/OpenDataAlex/etlTest?branch=dev

etlTest Documentation, Release 0.1.2 - beta

$ python setup.py test

• If you have the coverage package installed to generate coverage data, run:

$ coverage run --source=etltest setup.py test

• Check your coverage by running:

$ coverage report

2.3 Submitting Changes

• Push your changes to the feature branch in your fork of the repository.

• Submit a pull request to the main repository

• You will be notified if the pull was successful. If there are any concerns or issues, a member of the etlTest
maintainer group will reach out.

2.4 Additional Resources

• General GitHub documentation

• GitHub pull request documentation

10 Chapter 2. How to contribute

http://help.github.com/
http://help.github.com/send-pull-requests/

CHAPTER 3

Setting Up

Installing etlTest is as simple as running:

$ pip install etlTest

All the requirements will be installed and etlTest is ready to be used.

If you wish to install etlTest manually instead of via pip, there are two main options:

• GitHub

• PyPi

If going the manual install route, all requirements can be installed by running:

$ cd <where_etlTest_is_downloaded_and_extracted>
$ tox

All of etlTest’s own unit tests will run once the requirements are installed. If everything passes, you are good to go.

11

https://github.com/OpenDataAlex/etlTest/archive/dev.zip
https://pypi.python.org/pypi/etlTest

etlTest Documentation, Release 0.1.2 - beta

12 Chapter 3. Setting Up

CHAPTER 4

Configuration Settings

Below are the various configuration files used by etlTest.

4.1 etlTest Settings

This section describes the application-level configuration file and it’s various options. It is not recommended to make
changes to this section.

4.1.1 Default Settings

Here is the default .etltest-settings.yml file:

app_name: etlTest
logging_level: 20
app_author: etlTest
settings_file: properties.cfg
connection_file: connections.cfg
tools_file: tools.yml

These are the settings used by etlTest when running.

• app_name is the name of the application. This should remain the default ‘etlTest’.

• logging_level is the level of logging desired while etlTest is running. The default is ‘20’, which is the numerical value for logging at the ‘INFO’ level.

– 5 - TRACE

– 21 - TESTING

– Standard logging level for Python are defined in the official docs .

• app_author is the name of the application author group. This should remain the default ‘etlTest’.

• settings_file is the name of the file used for user-defined settings. The default is ‘properties.cfg’.

• connection_file is the name of the file used for data tool connections. The default is ‘connections.cfg’.

• tools_file is the name of the file used for data integration tool configuration. The default is ‘tools.yml’.

13

https://docs.python.org/2/library/logging.html

etlTest Documentation, Release 0.1.2 - beta

4.2 Data Connections

This section describes the setting file used for all data source and target connectivity.

4.2.1 Default Settings

Here is the default sample of the connections.cfg file. This file can be found in the application settings directory,
as described in Settings

[etlUnitTest]
hostname: 127.0.0.1
username: root
password:
port: 3306
type: mysql
dbname: etlUnitTest

While this sample is written for MySQL/MariaDB, you can connect to any data source supported by SQLAlchemy. The full
list of SQLAlchemy supported data sources can be found in their official documentation .

• [etlUnitTest] - The distinct name of the data source/target. Can be any valid string, as long as it does not
break configuration file standards.

• hostname: - The host name or the ip address of the system that hosts the data source/target.

• username: - The username that will be used to connect to the data source/target.

• password: - The password for the user account connecting to the data source/target.

• port: - The port on the host that allows for connections to the data source/target.

• type: - The type of data source/target being connected to. Must be compliant with the types of SQLAlchemy
dialects.

• dbname: - The name of the schema/database being connected to. Does not have to match the name used to
define

the data source/target.

4.3 etlTest User Properties Settings

This section describes the settings file used for the user’s environment settings.

4.3.1 Default Settings

Here is the default sample for properties.cfg. This file can be found in the application settings directory, as
described in Settings

[Locations]
tests: ${ETL_TEST_ROOT}/Documents/etlTest/tests
data: ${ETL_TEST_ROOT}/Documents/etlTest/data
output: ${ETL_TEST_ROOT}/Documents/etlTest/output
[Results]
Verbose: True
FailureRate: 10
ReportType: Normal

14 Chapter 4. Configuration Settings

http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#database_urls

etlTest Documentation, Release 0.1.2 - beta

While the sample is written with example paths, any valid directory path can be used. If the directory does not exist,
it will be created.

• [Locations] - This section of the properties configuration file contains locations for the various inputs and
outputs of etlTest.

• tests: - The location where the YAML test files are stored.

• data: - The location where the YAML data files are stored.

• output: - The location where the generated test scripts are created.

• [Results] - This section is currently not in use. The intent is to create user/environment based parameters

for how tests are run and the results shown. The parameters underneath are just examples and are ignored by etlTest.

4.4 Data Integration Tool Settings

This section describes the settings file used for Data Integration tool connectivity.

4.4.1 Default Settings

Here is the default sample for tools.yml. This file can be found in the application settings directory, as described
in Settings

PDI:
host_name: localhost
port:
user_name:
password:
private_key: '~/.ssh/id_rsa'
tool_path: ${TOOL_PATH}
code_path: ${ETL_TEST_ROOT}/etltest/samples/etl/
process_param: "/file:"
params: "/level: Detailed"
logging_filename_format: ${name}_%Y-%m-%d
script_types:
- type: job

script: kitchen.sh
- type: trans

script: pan.sh

While the sample is written for Pentaho Data Integration, it can be configured for any data integration tool that can be
run from the command line.

• PDI: - The unique name of the tool. Can be any string as long as it does not break YAML standards.

• host_name: - The unique name or ip address of the host the tool lives on.

• port: - The port used to ssh onto the host box.

• user_name: - The name of the user account that is used to run data integration code.

• password: - The password of the user account that is used to run data integration code.

• private_key: - The private key to tunnel onto the box, if needed.

• tool_path: - The install location of the data integration tool.

4.4. Data Integration Tool Settings 15

etlTest Documentation, Release 0.1.2 - beta

• code_path: - The location of the data integration tool’s code base. This is where etlTest will look for
executable code.

• process_param: - Any custom parameters that have to be used to call the code. In PDI’s case, files are
called with the /file: property.

• params: - Any parameters that need to be tacked onto the back of the command. In PDI’s case, logging is
handled by the /level: parameter.

• logging_filename_format: - If storing of the process logs is desired, this is the format of the logging
file name.

• script_types: - Multiple script types are allowed in the event that there are different components to the
data integration tool.

• type: - The callable type of script.

• script: - The script that handles the type of process. This is located where the data integration tool is
installed.

4.4.2 Sample Configurations

Here are some sample configurations for various tools that have been used with etlTest:

• Contributing New Tool Configurations

• Pentaho Data Integration (file-based)

Contributing New Tool Configurations

Are you using etlTest with a tool not listed here? Please consider contributing a sample tool setup! Find out how on
our How to Contribute page.

Pentaho Data Integration (file-based)

PDI:
tool_path: ${TOOL_PATH}
code_path: ${ETL_TEST_ROOT}/etltest/samples/etl/
process_param: "/file:"
params: "/level: Detailed"
logging_filename_format: ${name}_%Y-%m-%d
script_types:
- type: job

script: kitchen.sh
- type: trans

script: pan.sh

Special note: This sample takes advantage of two system variables:

• TOOL_PATH - Where the tool is installed (~/data-integration).

• ETL_TEST_ROOT - Where etlTest is installed, since we used the test samples for this sample tool configuration.

4.5 Settings File Location

The application settings file (.etltest-settings.yml) stays bundled with the application.

16 Chapter 4. Configuration Settings

etlTest Documentation, Release 0.1.2 - beta

All other configuration files go into the data directory created by etlTest and is custom to the operating system that
etlTest is installed on. etlTest takes advantage of a Python package named appdirs to handle configuration of the
directories. At runtime, two directories are created:

• log - which handles logging for etlTest.

• application - which handles all other configuration files.

The location where these directories are set up is based on the app_name and app_author parameters. On Linux,
the directories would be:

• log - ~/.cache/etlTest/log/

• application - ~/.local/share/etlTest/

Please review the appdirs documentation for more details.

4.6 Variable Replacement

Many of the values in these configuration files can be platform dependant. It makes sense to create system vari-
ables so that the tests are more portable. To use a system variable, enclose the name in ${your_value_here}
. For instance, to use a system variable named $TOOL_HOME call it as part of a configuration value like so:
${TOOL_HOME}/some/other/subdirectory . The variable will be replaced with it’s proper value.

4.6. Variable Replacement 17

https://pypi.python.org/pypi/appdirs/

etlTest Documentation, Release 0.1.2 - beta

18 Chapter 4. Configuration Settings

CHAPTER 5

Development Standards

Here are the standards used for developing tests in etlTest.

5.1 Sample Data File Standards

Here are the standards for building sample/test data files.

5.2 Test File Standards

Here are the standards for building test files.

5.2.1 Available Test Types

The types of tests available are a subset of the assertion types that are made available with Python’s unittest framework.
To see more about the tests available in unittest, check out their documentation .

The list of available tests in etlTest is as follows:

etlTest Type unittest Type Test Description
Equal assertEqual Are given and expected equal?
NotEqual assertNotEqual Are given and expected no equal?
BooleanTrue assertTrue Is given true?
BooleanFalse assertFalse Is given false?
Is assertIs Are given and expected the same object?
IsNot assertIsNot Are given and expected not the same object?
IsNone assertIsNone Is given None?
IsNotNone assertIsNotNone Is given not None?
In assertIn Is given in expected?
NotIn assertNotIn Is given not in expected?
IsInstance assertIsInstance Is given an instance of expected?
IsNotInstance assertIsNotInstance Is given not an instance of expected?

19

https://docs.python.org/2/library/unittest.html#assert-methods

etlTest Documentation, Release 0.1.2 - beta

5.3 Test Components

5.4 Test Templates

All of our tests are generated using the Jinja2 templating framework. This section will cover the various templates
used and what they do.

5.4.1 Test Suite Template Overview

5.4.2 Test Template Overview

This template is used to build unit test sets. This overview will break down the template file and describe the various
sections.:

{{ header }}
These tests are also run as part of the following suites:
#
{% for suite in tests.suites %}
{{ suite.suite }}
{% endfor %}
#
The following processes are executed for these tests:
#
{% for proc in tests.processes %}
{{ proc.tool }}:

{% for p in proc.processes %}
{{ p.name }}

{% endfor %}
{% endfor %}

This is the header section for our test files. It describes which test suites it is a part of (either unit test suites or others)
as well as any ETL processes and tools that are used.

import unittest
import datetime
from os import path

from etltest.data_connector import DataConnector
from etltest.process_executor import ProcessExecutor
from etltest.utilities.settings_manager import SettingsManager

These are all of the requirements for the tests - both external (from other packages) and internal (from etlTest).

class {{ testGroup }}Test(unittest.TestCase):

Using the name of the testGroup (from the yaml test file) as part of the name of the test class.

@classmethod
def setUpClass(cls):

Queries for loading test data.
{% for set in tests.dataset %}

DataConnector("{{ set.source }}").insert_data("{{ set.table }}", {{ set.records }})
{% endfor %}

{% for tool in tests.processes %}
{{ tool.tool }}_settings = SettingsManager().get_tool("{{ tool.tool }}")

20 Chapter 5. Development Standards

etlTest Documentation, Release 0.1.2 - beta

{{ tool.tool }}_code_path = SettingsManager().system_variable_replace({{ tool.tool }}_settings["code_path"])
{% for job in tool.processes %}

ProcessExecutor("{{ tool.tool }}").execute_process("{{ job.type }}",
path.join({{ tool.tool }}_code_path, "{{ job.name }}"))

{% endfor %}
{% endfor %}

During the setup phase of the test the records that are used are inserted into the source database. The ETL processes
that are listed in the header are executed here. This is only run once at the start of the run.

@classmethod
def tearDownClass(cls):

Clean up testing environment.

{% for set in tests.dataset %}
DataConnector("{{ set.source }}").truncate_data("{{ set.table }}")

{% endfor %}

During the teardown phase of the test, the tables that had records inserted are truncated (this is a current limitation that
we are trying to find a work around for). The teardown phase is only run once at the end of the run.

{% for test in tests.tests %}
def {{ test.name }}(self):

{{ test.desc }}

given_result = DataConnector("{{ test.query.source }}").select_data("{{ test.query.select }}",
"{{ test.query.from }}", "{{ test.query.where }}")

{% if test.query.result is defined and test.query.result not in ('BooleanTrue', 'BooleanFalse', 'IsNone', 'IsNotNone')%}

expected_result = [{{ test.query.result }}]
{% endif %}

{% if test.type == 'Equal' or test.type is not defined %}
self.assertEqual(given_result, expected_result)

{% elif test.type == 'NotEqual' %}
self.assertNotEqual(given_result, expected_result)

{% elif test.type == 'BooleanTrue' %}
self.assertTrue(given_result)

{% elif test.type == 'BooleanFalse' %}
self.assertFalse(given_result)

{% elif test.type == 'Is' %}
self.assertIs(given_result, expected_result)

{% elif test.type == 'IsNot' %}
self.assertIsNot(given_result, expected_result)

{% elif test.type == 'IsNone' %}
self.assertIsNone(given_result)

{% elif test.type == 'IsNotNone' %}
self.assertIsNotNone(given_result)

{% elif test.type == 'In' %}
self.assertIn(given_result, expected_result)

{% elif test.type == 'NotIn' %}
self.assertNotIn(given_result, expected_result)

{% elif test.type == 'IsInstance' %}
self.assertIsInstance(given_result, expected_result)

{% elif test.type == 'IsNotInstance' %}
self.assertIsNotInstance(given_result, expected_result)

{% else %}
self.assertEqual(given_result, expected_result)

{% endif %}

5.4. Test Templates 21

etlTest Documentation, Release 0.1.2 - beta

{% endfor %}

This is the actual test being generated. The test name is used for it’s code equivalent. The query used for the test is put
in as the given result while the expected result gets stored accordingly (if needed). Depending on the type of test used
will determine the type of assertion used (which is the if statement that checks the test type).

if __name__ == "__main__":
unittest.main()

This piece allows for the unit tests to be called based on the file name.

22 Chapter 5. Development Standards

CHAPTER 6

The etlTest Tutorial

This is a walk through is intended to assist new users in writing, generating, and executing tests for data integration
code. We have tried to keep topics specific to each function of the tool in their own section. This guide assumes that
etlTest has been installed on the environment that the tutorial is being performed on. Please refer to the installation
instructions found on the Setup page if etlTest has not been installed.

For the purposes of this tutorial, we will assume you have access to the following:

• Local MySQL instance (software is available from MySQL)

• Local Pentaho Data Integration instance (software is available from SourceForge)

• Database built using the etlUnitTest_build.sql script, found in the scripts directory of where etlTest is
installed, or from the Sample Database Script page

• Sample data integration code, found in the samples/etl directory of where etlTest is installed (user_dim_jb.kjb
and user_dim_load_tr.ktr)

In addition, while you are free to make any modifications to directory locations, we will be using the defaults found in
the sample settings files.

6.1 Preparing Your Environment

When you run etlTest for the first time, it checks if it has everything it needs in place to generate and execute tests.
Let’s go ahead and run etlTest from the command line:

etlTest

This will now create a data directory (for configuration files) and a log directory (for log files). etlTest uses the appdirs
package creating the directories specific to your operating system. Please refer to appdirs’ docs (found here)for details
about your environment. To keep these docs universal, here are the standard values we will be using:

• Data Directory - <your_data_path>/share/etlTest/

• Log Directory - <your_log_path>/etlTest/log/

Let’s check out the data directory and see what got added there:

cd <your_data_path>/share/etlTest/

There should be three configuration files there:

• connections.cfg - Used for data sources and targets

• properties.cfg - Used for tool configuration settings

23

http://dev.mysql.com/downloads/mysql/
http://sourceforge.net/projects/pentaho/files/Data%20Integration/
https://pypi.python.org/pypi/appdirs/

etlTest Documentation, Release 0.1.2 - beta

• tools.yml - Used for data integration tool settings

Those files are covered in more detail in the Configuration Settings section. Please feel free to make modifications as
necessary. Any references to Locations or directory paths will be based on the defaults found in the settings files.

If we also check out the log directory, we shouldn’t actually see any files there.

6.2 Writing Your First Test

Now that your environment is set up, it’s time to write some tests! Before we do, let’s take a look at our sample data
integration code - user_dim_load_tr.ktr:

tutorial/../images/tutorial/user_dim_load_tr.png

In this transformation, we have a Table Input that is pulling data from our users table (created as part of the Sample
Database Script), uses a String operations step to lower case the first_name field, and then insert the data using an
Insert/Update step into the user_dim table.

6.2.1 What to test for?

So there are many different things that can be tested here:

• How many records do we have in the source? How many are in the target?

• Does the data integration code actually lower case the first_name field?

• Does the data integration code inadvertently modify other data than the first_name field?

Take a few minutes as see if there are other things that could be tested to add to the list. Okay, got a good list?
Awesome! Tests will usually fall within one of three categories:

• Positive testing - first_name is lower case

• Negative testing - first_name is not upper case

• Edge cases - first_name with this specific last name is lower case

Each type of test can cause different kinds of issues while writing data integration jobs. Positive testing is the most
common type of testing in that it is the ‘expected results’. Testing for negatives - things that may have been seen but
have since been resolved - is the next common classification of tests. Edge cases are usually the hardest types of tests
to cover, especially without the ability to control your test data set.

For this tutorial, we will be creating three tests for our small data integration job.

6.3 Creating A Sample Data Set

Now that we have written our three tests, it’s time to create a data set so that we can accurately test them. Remember,
we have three tests that will require data:

• Does first name get lower cased?

• Does an upper case first name not return as upper case in the target table?

24 Chapter 6. The etlTest Tutorial

etlTest Documentation, Release 0.1.2 - beta

• Does the birthday field get impacted by the data integration code?

First, let’s create a new folder in our data directory (default is ${ETL_TEST_ROOT}/Documents/etlTest/data).:

cd ${ETL_TEST_ROOT}/Documents/etlTest/data
mkdir etlUnitTest

We created the etlUnitTest directory because that is the source where the data set we’re about to create lives.
Since the users table is the source for our data integration, we should create a new YAML file called users.yml .:

touch etlUnitTest/users.yml
vi etlUnitTest/users.yml

YAML (which stands for YAML Ain’t a Markup Language) was designed to provide some of the same capabilities of
XML without the verboseness. To find out more about YAML, head over to The Official YAML Website .

Now let’s actually build our data set. Remember, we need a data set that will meet the requirements for our tests. For
our first record, let’s include a standard, run of the mill users table record.:

1:
Generic record from the users table.

user_id: 1
first_name: Bob
last_name: Richards
birthday: 2000-01-04
zipcode: 55555
is_active: 0

Notice, the record is identified uniquely with 1 and that all the fields for record one are indented two spaces to indicate
they are all together. To give a value to a field, we just put a colon followed by a space and then the value we need for
it. i.e. column_name: column_value.

The record we just created will work fine for our first test case, but what do we do for the next one? We could copy
the record and change the first_name field to BOB, but that could run the risk of test collision when our test suites and
data sets get larger. Let’s build a new record specific to this test:

1:
Generic record from the users table.

user_id: 1
first_name: Bob
last_name: Richards
birthday: 2000-01-04
zipcode: 55555
is_active: 0

2:
Record for first_name all upper case.

user_id: 2
first_name: Sarah
last_name: Jenkins
birthday: 2000-02-02
zipcode: 12345
is_active: 1

We indicate a new record in the YAML file by removing any indentation in the next line after the zipcode column for
record one and give our record another unique identifier (this time 2). We use the same column names as before, but
we now have a record that has an entirely upper-cased first_name field.

For the third test case, we could create a new record or we can utilize one of the existing records to test if the birthday
field is manipulated. For the birthday test, we will use record one. Now we can work on building our tests.

6.3. Creating A Sample Data Set 25

http://www.yaml.org/

etlTest Documentation, Release 0.1.2 - beta

6.4 Configuring Your Data Integration Tool

6.5 Generating Test Code

6.6 Executing Your Tests

6.7 Sample MySQL Database

Here is the sample MySQL database script used for the tutorial and for etlTest’s own unit tests:

CREATE SCHEMA IF NOT EXISTS etlUnitTest;

USE etlUnitTest;

DROP TABLE IF EXISTS users;
DROP TABLE IF EXISTS user_dim;

CREATE TABLE users (
user_id INT NOT NULL,
first_name VARCHAR(75) NOT NULL,
last_name VARCHAR(75) NOT NULL,
birthday DATE NOT NULL,
zipcode CHAR(5) NOT NULL,
is_active TINYINT(1) NOT NULL DEFAULT 1,
PRIMARY KEY (user_id)

);

CREATE UNIQUE INDEX users_idx
ON users
(user_id);

CREATE TABLE user_dim (
user_id INT NOT NULL,
first_name VARCHAR(75) NOT NULL,
last_name VARCHAR(75) NOT NULL,
birthday DATE NOT NULL,
zipcode CHAR(5) NOT NULL,
PRIMARY KEY (user_id)

);

CREATE UNIQUE INDEX users_idx
ON user_dim
(user_id);

26 Chapter 6. The etlTest Tutorial

	Introduction
	Overview
	Why etlTest?
	How Does It Work?

	How to contribute
	Getting Started
	Making Changes
	Submitting Changes
	Additional Resources

	Setting Up
	Configuration Settings
	etlTest Settings
	Data Connections
	etlTest User Properties Settings
	Data Integration Tool Settings
	Settings File Location
	Variable Replacement

	Development Standards
	Sample Data File Standards
	Test File Standards
	Test Components
	Test Templates

	The etlTest Tutorial
	Preparing Your Environment
	Writing Your First Test
	Creating A Sample Data Set
	Configuring Your Data Integration Tool
	Generating Test Code
	Executing Your Tests
	Sample MySQL Database

